1. 船舶艏摇概念
我来试着解释一下:
1.船舶的艏-艉(前后)方向称纵向,用X来表示。左-右舷(左右)方向称横向,用Y来表示。
船的上甲板-船舱底(上下)方向称垂直方向,用Z来表示。
2.前后方向的晃动(窜动、荡)称为纵荡,左右方向的晃动(窜动、荡)称为横荡,上下方向的晃动(窜动、荡)称为垂荡。
3.左右方向摇摆叫横摇,前后方向摇摆叫纵摇,船艏左右摇摆叫艏摇。
4.晃动(荡)是平移,船的各个位置移动距离是一样的。
5.摇摆(摇)是绕着一个看不见的轴在转。船的各个位置摇摆的角度是一样的,但位移距离不同。
6.船在水里,实际荡和摇是同时发生的,只是人为地把他分为不同情况的组合。 7.所谓六个自由度,就是在笛卡尔直角坐标系内,沿三个轴移动和绕三个轴转动六种运动形式,称为六个自由度。 以上解释仅供参考。崔建一2012.10.11
2. 前倾型船艏
破冰船的主要特点是船体宽(纵向短,横向宽)、船壳厚、马力大,且船体各区域设有不同的压水舱,动力多采用对称的多轴,多螺旋桨配置。
分为江河、湖泊、港湾或海洋破冰船。
船身短而宽,长宽比值小,底部首尾上翘,首柱尖削前倾,总体强度高,首尾和水线区用厚钢板和密骨架加强。
破冰时,首部压挤冰层在行进中连续破冰或反复突进破冰。
破冰船动力系统:
破薄冰的船在船尾和靠近船头的侧位,分别各装两只螺旋桨,船头螺旋桨从冰下将水抽出,削弱冰层的支托并使其成为片状裂开。船在后两只螺旋桨的推动下前进。
破厚冰的破冰船,为使船可以冲到冲层上面,多在船尾两侧对称地装两只螺旋桨。
推进系统多采用双轴和双轴以上多螺旋桨装置,以柴油机为原动力的动力推进。螺旋桨和舵有防护和加强。
用燃料油为动力的破冰船,多采用柴油机带动发动机发电,电动机驱动螺旋桨(组合机组驱动),驱动功率可达上百万瓦,可以满足较长时间破冰航行的需要。
破冰通常有三种方法:
一是顶撞法,当冰层不超过1.5米厚时,多采用“连续式”破冰法。主要靠螺旋桨的力量和船头把冰层劈开撞碎,每小时能在冰海航行9.2千米。
二是堆积水破冰法,如果冰层较厚,则采用“冲撞式”破冰法。冲撞破冰船船头部位吃水浅,会轻而易举地冲到冰面上去,船体就会把下面厚厚的冰层压为碎块。然后破冰船倒退一段距离,再开足马力冲上前面的冰层,把船下的冰层压碎。如此反复,就开出了新的航道。
具体过程是:在船艏和船尾各有一个或数个压水舱,破冰的时候,先把前柜排空,后柜灌满海水,前面会翘起,开大马力冲上冰面,然后排空后柜灌满前柜,靠重量压碎冰面-----左右太窄就轮番灌排左右水柜,让舰身摇晃,把冰面碰碎。
三是冲撞法,在冰块的厚度太厚的时候,破冰船就是这样工作的,要用船的撞击作用来制服它。这时候破冰船就向后退,然后用自己的全部质量向冰块猛撞上去。这时候起作用的已经不是重量,而是运动着的轮船的动能;船好象变成了一个速度不大但是质量极大的炮弹,变成了一个撞锤。
3. 船艏的拼音是什么
1.船舶的艏-艉(前后)方向称纵向,用X来表示。左-右舷(左右)方向称横向,用Y来表示。船的上甲板-船舱底(上下)方向称垂直方向,用Z来表示。
2.前后方向的晃动(窜动、荡)称为纵荡,左右方向的晃动(窜动、荡)称为横荡,上下方向的晃动(窜动、荡)称为垂荡。
3.左右方向摇摆叫横摇,前后方向摇摆叫纵摇,船艏左右摇摆叫艏摇。
4. 船用艏侧推
有的。因为船是靠螺旋桨推进的,所以比较常见的是通过可调螺距螺旋桨(CPP: Controllable Pitch Propeller)来实现这个功能。CPP(简称可调桨或调距桨)通过设置于桨毂中的操纵机构使桨叶能够相对于桨毂转动调节螺距的螺旋桨,它是通过转动桨叶来改变螺距,从而改变船舶航速或正车、倒车,调距桨装置由桨叶、桨毂机构、轴系(艉轴、艉管、中间轴等)、配油器、液压系统和电子遥控系统等几大部件或系统组成。调距桨结构形式可以分为毂内油缸式和推拉杆式,毂内油缸式CPP其伺服油缸布置在桨毂内部,而推拉杆式CPP其伺服油缸布置在轴系上,前者一般用于大马力船舶,但油缸维修不方便,后者一般用于小马力船舶,油缸维修方便。
可以在驾驶室、集控室、机旁控制CPP。在驾驶室操纵控制杆,电液伺服控制系统通过配油机构,将来自液压站的高压油输入到位于螺旋桨桨毂中的伺服油缸,并通过转叶机构,驱动桨叶,在全正车和全倒车范围内,无级调节螺距角。对于任一规定的螺距角,由主机驱动的以某一转速运转的螺旋桨将吸收的扭矩转化为推船前进的力或拉船倒退的力。
可调螺距螺旋桨与定距桨相比具有以下优点:
调距桨能够在不改变螺旋桨和主机转向的情况下,仅用改变螺距的方法得到从最大正值到最大负值的各种推力值,既可以省去换向装置,又可缩短船舶换向航行的时间。
对于多工况船舶,可以在不同航行工况下充分吸收主机的功率,利用无级变速,如若螺旋桨与主机处于联合控制模式下即同时改变主机转速和螺距比并使之匹配适当,可以使船舶在单位时间内消耗的燃料最少。
可以使船舶微速前进,如海洋调查船、布缆船、扫雷舰等工程船和军用辅助船,要求船舶能够微速稳定航行,利用调距桨可以实现。
改善船舶操纵性能。装有调距桨的船舶可以提高靠离码头、改变航向、紧急停车或倒车、避免碰撞的机动性能。使用调距桨的船舶停船时间大约比定距桨减少1/3,滑行距离缩短一半,这对于改善船舶操纵性能十分重要。
在部分螺旋桨工作状态下,用置桨叶于顺水位的方法可使螺旋桨所受阻力减少。
调距桨具有诸多优点,但是同时也有自身的缺点:如毂径比大,螺旋桨效率降低;桨叶易产生空泡等;可调桨构造复杂,造价昂贵;维护技术要求高等。
广泛采用调距桨的船型有:拖船、渔船、工程船(布缆船、挖泥船等)、调查船、科学考察船、成品油船、化学品船、渡船、滚装船、破冰船等。
可调桨典型轴系配置一般包括:主机(M.E.)、高弹性联轴器、齿轮箱(G.B.)、CPP轴系、螺旋桨等。
主机:有高速机、中速机和低速机,一般工程船CPP优先配备中速机。国内船用柴油机厂家有宁动、广柴、陕柴、镇柴、淄柴、河柴、安庆大发、玉柴、潍柴......,都是引进国外技术,授权贴牌生产,不具备独立研发能力,与国外柴油机厂家如曼恩、瓦锡兰、卡特彼勒、康明斯、马克、大发......技术实力差距较大。
齿轮箱:中速机额定转速一般500~1000rpm,而桨的转速一般~200rpm,所以需要设置减速齿轮箱。国内船用齿轮箱厂家主要有,杭齿、重齿、南高齿、杭州发达等,国内齿轮箱技术已经发展比较成熟,达到了技术独立研发的能力,能够基本满足船舶推进系统要求,近年来随着技术的进步,主推进系统的双机并车齿轮箱也已经开发出来了。一般CPP配备的齿轮箱会带有PTO(Power Take Out),如果是一个PTO,此PTO一般用于带轴带发电机,此轴发发出的电可以供船上艏(艉)侧推用电;如果齿轮箱带有两个PTO,另一个PTO一般带消防泵。齿轮箱输出轴设置推力轴承,用于承受螺旋桨的推力,将螺旋桨的推力传递给船体,此推力轴承可以是滑动轴承也可以是滚动轴承。有些船上齿轮箱与轴发部位设置PTI(Power Take In),即当主机有严重问题无法工作时,齿轮箱将主机脱开后,此轴发逆向工作驱动螺旋桨运转。
高弹性联轴器:主机和齿轮箱之间通过高弹性联轴器(简称高弹)连接,高弹只传递扭力,不传递轴向推力,可以减轻主机振动对齿轮箱的影响,还可以补偿主机和齿轮箱安装时的径向误差。高弹与主机输出轴、高弹与齿轮箱输入轴之间通过法兰连接。齿轮箱PTO与轴发或消防泵也用高弹连接。目前使用最多的、被大部分船东认可的高弹产品是德国伏尔康高弹,在无锡有工厂,主要部件靠进口,国内组装。一般船舶轴系扭振强度计算书由高弹厂家负责计算。
CPP轴系:包括中间轴、桨轴、艉管、配油器、轴系附件(轴系接地装置、隔舱填料函、轴系测速装置、锁轴装置等)、液压联轴器、连接螺栓等。中间轴与齿轮箱、中间轴与中间轴之间连接的螺栓一般是铰制孔螺栓,可以采用液氮或干冰冷装也可以采用外力敲击的方法。中间轴与桨轴通过液压联轴器连接,液压联轴器是带有锥度的内外套(也有不带内套的),通过摩擦力抱紧轴,传递轴向推力和扭力,分为套筒式和法兰式,安装拆卸方便,且可以多次反复拆装。
5. 船舶艏垂线
船舯的位置:
1.船舯是指以船舶首垂线和尾垂线为边界,和这两条直线垂直的线的中点,首垂线是通过船舶首柱与设计水线的交点的垂线,尾垂线为舵杆中心线.
2.舱口围的高度是从船的甲板边线算起的.
船体一般分为上层建筑和主船体。主船体,长度方向分为船首、船中和船尾;宽度方向分为上甲板、船底和舭部。上层建筑分为艏楼、桥楼和艉楼。
6. 船舶艏楼的作用
一、依阿华级战列舰
依阿华级战列舰共完成建造4艘,是世界上舰体最长、主机功率最大、航速最高(达到33节)、最晚退役(1992年退役封存)的战列舰,4艘同型舰仍保存。由于依阿华级的继承舰——蒙大拿级的取消建造,使得这一级战列舰成为美国海军的最后一级战列舰。
“依阿华”号战列舰9门主炮右舷顺次射击,据称可导致这艘排水量45000吨的庞然大物侧移10米。主炮采用了轻量化的MK7型406毫米50倍口径主炮,由于应用了当时最先进的冶金技术,成功地将身管结构从MK2型的7层减少到2层,身管重量也降低了22吨,减至108吨。MK7型主炮内身管长度20.2米,有96条膛线,每25倍口径距离旋转一圈。副炮采用10座MK12型38倍口径127毫米口径双联装高平两用炮,炮塔布置在舰体中部两舷。
二、“大和”号战列舰
“大和”级战列舰就吨位来说,是人类历史上建造过的最大的战列舰。火炮上而言,“大和”号在战列舰发展史上也是空前绝后的,她装备的九门460毫米口径主炮——是迄今为止战列舰所装备过的最大口径的舰炮。
除此之外,“大和”号还装备了从155毫米到127毫米的几十门副炮与防空炮,此外25毫米到13毫米的机关枪多达数百门,密密麻麻地布置在舰体各处。因此,单纯论舰炮火力而言,“大和”号是人类历史上建造过的最强大的超级战舰。
就装甲防护而言,“大和”号也可谓是武装到了牙齿。其要害处装甲厚达410毫米,炮塔的厚度更是达到了650毫米,能够在20公里左右抵御当时世界上几乎所有主流舰炮的火力。
三、俾斯麦级战列舰
俾斯麦级战列舰是纳粹德国建成的最大的主力舰,超越了英国皇家海军旗舰胡德号战列巡洋舰,成为当时世界上吨位最大的战舰。希特勒称它为“德国海军的骄傲”,就连敌人丘吉尔也不得不赞叹“这真是一艘了不起的船只”。
它以普鲁士铁血宰相命名,凝聚德国最先进的工业和科技智慧结晶,其武备之强令同时代战舰望尘莫及,只用6分钟就消灭了被称为英国海上国力象征的胡德号战列舰,震惊了整个世界。
四、南达科他级战列舰
南达科他级战列舰是在北卡罗来纳级战列舰基础上改进而成,可担任舰队(特混编队)级旗舰,虽然由于排水量受条约限制及试用了一些未经全面测试的革新性新技术,而并不是十分成功,但仍被公认是攻防平衡的优秀的条约型战列舰,在太平洋战争中发挥着重要作用,在战争中多用做为航空母舰编队护航和对岸火力支援使用,被编入航空母舰编队,利用其强大的防空火力网为快速航空母舰特混舰队提供空中保护与支援两栖作战。相继参加了进攻吉尔伯特群岛、马里亚纳群岛的战役,莱特湾海战,攻占硫磺岛和冲绳岛的战役以及对日本本土的炮击作战。
五、北卡罗来纳级战列舰
北卡罗来纳级战列舰是20世纪30至40年代美国建造的第一种快速战列舰。该级舰标准排水量35000吨,满载排水量44800吨,主炮为3座三联装45倍口径406毫米主炮,舰桥前部2座,后部1座。主炮可发射重型穿甲弹。副炮为10座双联装38倍口径127毫米高平两用炮。高炮最初采用28毫米和12.7毫米机枪,但在建成后随即换成盟军制式的20毫米及40毫米机关炮。
作为美国快速战列舰的开端,应用了大量的先进技术与美国海军的实践结晶,是末代战列舰中最有技术含量的战列舰之一,从后世的眼光来看,这一级战列舰是绝对有实力被称为一流的末代战列舰。
该级战列舰2艘舰,都参加了第二次世界大战的海上作战,并取得不俗战绩,展示了强大的火力打击性能,是美国海军的优秀战列舰之一。
六、黎塞留级战列舰
黎塞留级战列舰是20世纪30年代法国建造的该国海军史上最大、最后一级战列舰。该级舰标准排水量38500吨,满载排水量47548吨,前甲板装备8门380毫米主炮,后甲板布置9门152毫米高平两用火炮,舰体两舷有12门100毫米高射炮,拥有密集的攻击火力。该级舰由6台增压锅炉蒸汽机驱动,总功率为15.7万匹马力,战舰航速达到32节。
黎塞留级战列舰作为法国本土主力舰队核心的,其作战思想就是在地中海能与意大利主力舰或者英国地中海分舰队决战,同时能进行护航、破交和对陆火力支援、压制任务。基于此,黎塞留级在设计上具有以下特点:具有高航速,但续航力不作过高要求;具有足以对付意大利新型战列舰的主炮;具有较强的水平装甲带,还有较强的对空防护能力。
黎塞留号战列舰的航迹遍布世界三大洋,是法国海军参战范围最广、航程最远的战列舰,也是法国历史上最著名的战列舰,代表了法国战列舰建造的最高水平。
七、乔治五世级战列舰
乔治五世国王级战列舰是20世纪30年代末期英国建造的一级战列舰,也是第二次世界大战前英国建造的最后一级战列舰。该舰是英国皇家海军为适应1936年第二次伦敦海军军备会议而设计的,是典型的条约型战列舰。
总体而言,“乔治五世”但体现了临战时期的务实原则:争取时间、力求实用。尽管饱受主炮研发进度拖沓的折磨,但该级战列舰仍然是第一批服役的条约型战列舰。纵观将近5年的服役历程,“乔治五世”级几乎参加了皇家海军1940年末以来的历次重大行动,尽管使用中曾多有故障,也付出了战沉的代价,但最终迎来了胜利的曙光。
八、维内托级战列舰
维内托级战列舰是第二次世界大战前意大利建造的一型战列舰。该级舰又称为利托里奥级战列舰,该级舰满载排水量45000吨,采用适航性较好的长艏楼、球鼻艏、巡洋舰艉构型,装备三座三联装381毫米口径主炮(前二后一)、四座三联装152毫米副炮和十二座90毫米单管高炮。装甲为带延伸结构的的盒型装甲舱和普列赛防鱼雷系统,装甲防御和水下防御体系完全独立,在设计上前卫且符合意大利海军特点和需求,是充分体现意大利海军在地中海作战意图的主力舰。
九、纳尔逊级战列舰
纳尔逊级战列舰是20世纪20年代英国建造的一型战列舰,该级战列舰不再采用以往英国战列舰常用的艏楼船型,改用平甲板船型,并根据日德兰海战的经验教训着重提升装甲防护水平。纳尔逊级舰安装3座三联装16英寸主炮和12门6英寸副炮,装备两台总功率45000马力的蒸汽轮机,但因舰体过重而航速只有23节。
纳尔逊级战列舰一反过去英国战列舰不太重视防护性能的弱点,第一次将舰船防护放在了设计要求的首位,甚至为了防护(火力已经由条约限定)不惜极大地牺牲航速。纳尔逊级是条约型战列舰的开山之作,也是现代化战列舰的先驱,代表了战列舰新时代的开始,尽管性能不佳,但是纳尔逊级代表了更为先进的设计思想,它在世界战列舰史上的地位仍然是不容低估的。
十、长门级战列舰
长门级战列舰是日本帝国海军建造的一级战列舰。该级舰满载排水量39000吨,装备8门410毫米主炮(另有注为16英寸、即406毫米)、18门140毫米副炮和8门127毫米高射炮,军舰航速高达26.5节,是当时战列舰中火力猛、航速快、作战效能高的战列舰。
7. 船艏的意思
船舶尾倾意思如下
纵倾状态:是指左右吃水相等而首尾吃水不等的情况。船首吃水大于船尾水叫首倾;船尾吃水大于船首吃水叫尾倾。为保持螺旋桨一定的水深,提高螺旋桨效率,一航未满载的船舶都应有一定的尾倾。
船舶在海上航行,经常会遇到海浪打上甲板,冬季还会结成很厚 的冰,这就等于给船舶增加了重量。为了保障船舶安全,船舶必须留有一定的储备浮力(也叫保留浮力)。储备浮力是指船舶主甲板以下至水线之间水密空间产生的浮力,
8. 船艏向的概念
船体标志 船体标志为一条宽红色与四条蓝白相同的斜线条构成,红色部分与蓝白相间部分的宽度相等,由船艉向船艏方向倾斜,斜条与水平面的夹角为60度,标在船名后
9. 船舶横摇角
在船舶设计中改善稳性的措施有:
①合理调整B(或B/T)、水线面系数、重心高度,适当控制初稳性高度。
②尽可能降低,增大D/T(或F/T),采用大的舷弧和外飘的横剖线,控制好静稳性曲线的形状特征。
③注意液舱数量及大小的布置,尽量减少自由液面对初稳性和稳性曲线的影响。
④增大横摇阻尼(如设置舟比龙骨,减小舟比部半径等),减小横摇角。
⑤减小横倾力矩(如:控制好上层建筑的布置,减小受风面积及风压中心的高度;限制旅客横向活动范围;降低拖钩位置;防止货物横向移动等)。