捷联式惯性导航系统根据所用陀螺仪的不同分为两类:一类采用速率陀螺仪,如单自由度挠性陀螺仪、激光陀螺仪(见陀螺仪)等,它们测得的是飞行器的角速度,这种系统称为速率型捷联式惯性导航系统;另一类采用双自由度陀螺仪,如静电陀螺仪,它测得的是飞行器的角位移,这种系统称为位置型捷联式惯性导航系统。通常所说的捷联式惯性导航系统是指速率型捷联式惯性导航系统。
矩阵变换和姿态、航向信息的计算 惯性导航的实质是测出飞行器相对导航坐标系(如地理坐标系)的加速度,经过两次积分得到飞过的距离,从而确定飞行器所在的位置。在捷联式惯性导航系统中测得的是沿飞行器机体轴向的加速度,因而需要利用数学方法把机体坐标系轴向的加速度信号换算成地理坐标系轴向的加速度信号。常用的坐标换算方法有欧拉角法、方向余弦法和四元素法三种。欧拉角法用动坐标系相对参考坐标系依次绕3个不同坐标轴转动的3个角度来描述它们之间的方位关系。这 3个角度称为欧拉角。方向余弦法用动坐标系3个坐标轴和参考坐标系3个轴之间的方向余弦来描述这两个坐标系相对的方位关系。四元素法用动坐标系相对参考坐标系转动的等效转轴上的单位矢量和转动角度构成四元素来描述动坐标系相对参考坐标系的方位关系。用这三种方法都可以算出两种坐标系之间的变换矩阵,进行坐标变换并提取姿态和航向信息。
惯性导航技术发展的历史过程有谁知道吗?求告知!
从广义上讲从起始点将航行载体引导到目的地的过程统称为导航。 从狭义上讲导航 是指给航行载体提供实时的姿态、 速度和位置信息的技术和方法。 早期人们依靠地磁场、 星光、太阳高度等天文、地理方法获取定位、定向信息,随着科学技术的发展,无线电 导航、惯性导航和卫星导航等技术相继问世,在军事、民用等领域广泛应用。其中,惯 性导航是使用装载在运载体上的陀螺仪和加速度计来测定运载体姿态、 速度、 位置等信 息的技术方法。实现惯性导航的软、硬件设备称为惯性导航系统,简称惯导系统。
捷联式惯性导航系统(Strap-down Inertial Navigation System,简写 SINS)是将 加速度计和陀螺仪直接安装在载体上, 在计算机中实时计算姿态矩阵, 即计算出载体坐 标系与导航坐标系之间的关系, 从而把载体坐标系的加速度计信息转换为导航坐标系下 的信息,然后进行导航计算。由于其具有可靠性高、功能强、重量轻、成本低、精度高 以及使用灵活等优点,使得 SINS 已经成为当今惯性导航系统发展的主流。捷联惯性测 量组件(Inertial Measurement Unit,简写 IMU)是惯导系统的核心组件,IMU 的输出信息的精度在很大程度上决定了系统的精度。
陀螺仪和加速度计是惯性导航系统中不可缺少的核心测量器件。现代高精度的惯性导航系统对所采用的陀螺仪和加速度计提出了很高的要求,因为陀螺仪的漂移误差和加速度计的零位偏值是影响惯导系统精度的最直接 的和最重要的因素,因此如何改善惯性器件的性能,提高惯性组件的测量精度,特别是 陀螺仪的测量精度,一直是惯性导航领域研究的重点。 陀螺仪的发展经历了几个阶段。最初的滚珠轴承式陀螺, 其漂移速率为(l-2)°/h, 通过攻克惯性仪表支撑技术而发展起来的气浮、液浮和磁浮陀螺仪,其精度可以达到 0.001°/h,而静电支撑陀螺的精度可优于 0.0001°/h。从 60 年代开始,挠性陀螺的 研制工作开始起步,其漂移精度优于 0.05°/h 量级,最好的水平可以达到 0.001°/h。
1960 年激光陀螺首次研制成功,标志着光学陀螺开始主宰陀螺市场。目前激光陀螺的 零偏稳定性最高可达 0.0005°/h,激光陀螺面临的最大问题是其制造工艺比较复杂, 因而造成成本偏高, 同时其体积和重量也偏大, 这一方面在一定程度上限制了其在某些 领域的发展应用, 另一方面也促使激光陀螺向低成本、 小型化以及三轴整体式方向发展。 而另一种光学陀螺-光纤陀螺不但具有激光陀螺的很多优点, 而且还具有制造工艺简单、 成本低和重量轻等特点,目前正成为发展最快的一种光学陀螺
我国发展
编辑
我国的惯导技术近年来已经取得了长足进步,液浮陀螺平台惯性导航系统、动力调谐陀螺四轴平台系统已相继应用于长征系列运载火箭。其他各类小型化捷联惯导、光纤陀螺惯导、 激光陀螺惯导以及匹配GPS修正的惯导装置等也已经大量应用于战术制导武器、飞机、舰艇、运载火箭、宇宙飞船等。如漂移率0.01°~0.02°/h 的新型激光陀螺捷联系统在新型战机上试飞,漂移率0.05°/h 以下的光纤陀螺、捷联惯导在舰艇、潜艇上的应用,以及小型化挠性捷联惯导在各类导弹制导武器上的应用,都极大的改善了我军装备的性能。