1、在层状岩层中,锚杆将下部不稳定岩层悬掉在上部稳固岩层上。锚杆所受拉力来自被悬掉岩层。2、在没有稳固岩层的薄岩层中,安心装锚杆后,锚杆的夹紧力就会使层面间摩擦力增大,这种摩擦力可以阻止岩石沿层面继续滑动,从而将数个薄岩层通过锚杆锁紧成一个较厚的岩层。这种厚岩梁内的最大弯曲应力和应变与梁的厚度的平方成反比,集成的岩梁越厚,最大弯曲应力和应变就越小。同时,锚杆本身的强度也增加了梁的整体抗剪能力。3、锚杆组合拱原理,在供形巷道围岩的破裂区中安装预应力锚杆时,在杆体两端将形成圆椎体形式分布的压应力。若沿顶板布置锚杆群,各个锚杆形成的压应力圆椎体将交错重叠,形成一个防止破裂区扩散的承压拱,这个供可以承受其上部破碎岩石施加的径向载荷。沿锚杆轴向的预紧力在组合拱中产生环向应力,从而明显地改善了承压拱应力状态,使围岩状态由单轴、双轴变为三轴受压。这样在围岩中形成一个均匀压缩的连续承区,从而大大提高组合拱的承载能力。
摇臂钻床立柱内部结构图
摇臂钻床立柱内部结构图如图
摇臂钻床主要由底座、内立柱、外立柱、摇臂、主轴箱及工作台等部分组成。
内立柱固定在底座的一端,在它的外面套有外立柱,外立柱可绕内立柱回转360度。摇臂的一端为套筒,它套装在外立柱做上下移动。由于丝杆与外立柱连成一体,而升降螺母固定在摇臂上,因此摇臂不能绕外立柱转动,只能与外立柱一起绕内立柱回转。
主轴箱是一个复合部件,由主传动电动机、主轴和主轴传动机构、进给和变速机构、机床的操作机构等部分组成。主轴箱安装在摇臂的水平导轨上,可以通过手轮操作,使其在水平导轨上沿摇臂移动。
扩展资料
1、工作前必须全面检查各部操作机构是否正常,将摇臂导轨用细棉纱擦拭干净并按润滑油牌号注油。
2、摇臂和主轴箱各部锁紧后,方能进行操作。
3、摇臂回转范围内不得有障碍物。
4、开钻前,钻床的工作台、工件、夹具、刃具,必须找正,紧固。
5、正确选用主轴转速、进刀量,不得超载使用。
6、超出工作台进行钻孔,工件必须平稳。
7、机床在运转及自动进刀时,不许变紧固换速度,若变速只能待主轴完全停止,才能进行。
8、装卸刃具及测量工件,必须在停机中进行,不许直接用手拿工件钻削、不得戴手套操作。
9、工作中发现有不正常的响声,必须立即停车检查排除故障。
参考资料来源:搜狗百科-钻床
参考资料来源:搜狗百科-摇臂钻床
地球内部圈层包括几层,它们之间的分界面分别是什么
地球内部圈层由外向里分为地壳、地幔和地核。地壳与地幔的分界面为莫霍界面,地幔与地核的分界面为古登堡界面。
1、地壳
地壳是地球固体地表构造的最外圈层,整个地壳平均厚度约17千米,其中大陆地壳厚度较大,平均约为39- 41千米。高山、高原地区地壳更厚,最高可达70千米;平原、盆地地壳相对较薄。大洋地壳则远比大陆地壳薄,厚度只有几千米。
2、莫霍面
1910年莫霍洛维奇提出地球有内外层之分。他指的内外层就是我们所说的地幔和地壳。而地壳与地幔的分界面也就被称之为莫霍洛维奇不连续面(莫霍面)。
在莫霍面上,地震波的纵波和横波传播速度增加明显,弹性和密度随深度逐渐增加,地幔物质密度、硬度大于地壳。此面以上物质平均化学组成与玄武岩相似,密度约2.9×10^3kg/m^3;此面以下物质平均化学组成与橄榄岩相近,密度约3.1-3.3×10^3kg/m^3。莫霍面温度为400-1000/℃
3、地幔
地幔介于莫霍面和古登堡面之间,厚度在2800km以上,平均密度为4.59/cm3,积约占地球体积的82.26%, 地幔的质量约占地球总质量的67.0%,在很大程度上影响了地球物质的总组成。地幔的横向变化比较均匀,根据地震波速度的变化以1000km激增带为界面(雷波蒂面),进一步划分出上地幔和下地幔两个次一级圈层。
4、古登堡界面
古登堡界面,又名古腾堡界面。根据地震波波速变化而划分,是地幔与地核的分界面。地震波传播时,除了在地球内部深度约33千米处波速有一个显著的变化(此处称为莫霍界面,是地壳与地幔的分界线)之外,在深度约为2900千米处,地震波传播状态也会发生明显的改变,此处便被称为古登堡界面。地幔位于莫霍界面与古登堡界面之间。
由于地球外核为液态,在地幔中的地震波S波(S波即横波,横波只能在固体中传播)不能穿过此界面在外核中传播。P波(指纵波)曲线在此界面处的速度也急剧减低。
5、地核
地核是地球的核心部分,位于地球的最内部。半径约有3470 km,主要由铁、镍元素组成,高密度,地核物质的平均密度大约为每立方厘米10.7克。温度非常高,有4000~6800℃。
参考资料来源:搜狗百科-地球圈层