1. 船舶雷达问题研究
看雷达辐射能量有关。
平均功率上百瓦的,近距直接照射;平均功率上千瓦的,雷达附近都会有影响。
一般反应是头疼、头昏、恶心、睡眠不好。
2. 船舶雷达原理
船舶配备了AIS 设备以后,设备一方面需要向外发送本船的相关信息,同时也要接收在VHF
有效作用距离之内其他船舶的信息。接收到的信息一方面用文字的方式表示出来,另一方面可以
形象地用雷达图表示,AIS 船舶全部用三角符号“△”表示,直观地显示船舶的相对位置,和运
动方向,在电子海图上,可以用矢量线表示船舶的速度,必要时利用尾迹线表示船舶航行的痕迹,
船位数据取自GPS 乃至差分GPS,其精度很高。要是在AIS 设备上选择一个目标或者在电子海
图中从船舶标志处用鼠标点击一下,便可瞬时显示对应的船名、呼号、MMSI 注册号以及航向、
航速、CPA、TCPA 等重要的航行信息,驾驶员了解了这些信息后,就可以非常方便地判断周围
其它船舶的运动情况,确保航行安全,同时在进行相互通信可以直呼其船名,信息交流非常方便。
AIS 工作在VHF 航海频段,国际电信联盟1997 年无线电大会指定了161.975MHz(87B 频道)
和162.025MHz(88B)频道二个VHF 频率作为AIS 工作频道。就完成通信而言,一个无线电频道
已经足够了,但是为了防止干扰和转换频道时造成通信损失,每个AIS 站均使用二个频道进行
收发。
除人工干预外,AIS 应答器都工作在自主连续模式,发射方式是9.6Kb GMSK FM 带宽25KHz
或者12.5KHz 数据采用HDL 包协议。
根据船— 船通信这样的实际条件,AIS 使用了自组织时分多址技术(SOTDMA)这一核
心技术。根据IMO 的AIS 性能标准对要求船舶报告的容量的要求,系统每分钟应有2000 个时
隙,但实际上,系统的设计是每分钟4500 时隙,每一帧60 秒,即每60 秒钟建立2250 个时隙,
每个时隙约26.67ms, 可传输256bits 的信息,每个AIS 站的船舶报告根据信息的容量自动选择一
到三个时隙,分一帧和数帧发射或接收AIS 信息。系统实时动态地调整信道分配
具体工作中,在一个AIS 站开始发送之前先要对当时信道的使用状态观察一段时间,搞清
时隙使用情况,然后可以选择未占用的时隙,标明需占用的帧数,再发送数据,各AIS 站持续
地保持同步,可避免发送时间重叠,新加入AIS 站也不会发生冲突。在数据链负荷超过理论值
的90%时,新加入的站可以占用距离最远的台所遥的时隙,从而保证系统有很的过载能力。
自组织分时多址技术可以自动解决本台与其他台的竞争问题,即使系统过载、通信仍能保持
完好;系统每分钟可以处理2000 个以上报告,本船接收到的数据间隔2 秒可以更新一次。
AIS 对DSC 向下兼容,因此岸基的GMDSS 系统可以对装备AIS 的船舶进行识别、跟踪和
控制。
AIS 采用VHF 频段,它的覆盖距离与其他VHF 设备一样,电波直线传播。距离取决于天线的高
度,在海上通常为20 海里左右。由于其波长较雷达长,波的绕射以及衍射作用较强,所以“可
视距离”较雷达要好,在地面上的障碍物不太高的情况下,能“看到”障碍物或岛屿背面的AIS
站。借助于中继站,可以显著扩大船台和VTS 站的覆盖范围。
3. 船舶雷达问题研究现状
现代商船雷达一班都是日本古野、JRC,英国凯文休斯,德国斯博瑞用的比较多
4. 船舶雷达问题研究报告
1、在雷达和GPS等定位系统上设置警戒圈范围,使之船舶走锚时发出警报。
2、根据与其它锚泊船的相对位置来判断走锚。
3、观察锚链的受力情况,发现锚链始终处于绷紧状态或发生间歇性的剧烈抖动,即有可能走锚.一旦发现走锚切不可松长锚链,因为松长锚链不利于锚的二次抓底,应立即抛下另一锚,及时通知机舱备车,报告船长,悬挂Y信号旗,用VHF向外发布信息,主机备受后进行起锚,重新择地抛锚。
5. 船舶雷达反射器
船用雷达是一种传统的无线电导航设备,在船舶近海定位、引导船舶进、出港,窄航道航行以及在避碰中发挥作用。GPS导航仪在海洋船舶中已普遍使用,它与雷达相比具有全球、连续、实时、高精度、多功能等优点。随着海用信标差分GPS(DGPS)基台的不断建立,可将使用GPS C/A码的定位精度提高到米量级。因此,还可应用DGPS或GPS导航仪来改善雷达的使用性能,测定雷达测距、测向精度,弥补雷达在避碰和锚位监视等方面的某些局限性。
2 GPS与雷达的定位与导航功能
2.1 定位功能
船用雷达发射无线电波,并接收该电波从目标反射的回波,在显示器上一目了然地显示周围物标相对于本船的图像。测定一个或几个固定物标相对于本船的方位和距离,可在海图上作出船位。由此可见,雷达对于船舶在近岸海区或窄航道上安全航行发挥重要作用,特别是在雾航中更加显示它的重要性。但是,由于受到雷达电波传播的视距所限,探测物标的距离通常只有几至几十海里,不能用于远洋定位。 GPS导航仪同时跟踪3颗或4颗卫星信号,测定到达卫星的伪距,通过导航仪内部计算机解算,实现实时、连续、全球、高精度定位,可弥补雷达不能实现远洋定位以及定位不连续、定位操作工作量大等缺点。
2.2 导航功能
30m左右的中型引航船。考虑到天津港冬季多大风,
锚地无遮蔽,以及在海况好时的工作方便,可考虑配置1艘不小于40m的大型子母引航船。天气及海况不好时,可单独执行任务;海况好时,可将其携带的2艘高速艇放下,共同执行任务。如子母船的设想不能成立,也可只配置1艘大型引航船,另配置2艘高速艇。 无论任何型号的引航船(艇),在设计上必须考虑到靠船的要求和引航员上、下船的方便。
3.3 对速度和操纵性能的要求 引航船在速度上不能低于16kn。 高速艇一般不能低于20kn。 从操纵灵活的要求出发,采用可变螺距船;驾驶操纵系统,应以方便1人操作为原则;大型引航船,还应加装首侧推器。
3.4 要配置先进的雷达及通信设备
另外,船身应为白色,并在明显处标注英文“引航(PILOT)”。
以上仅是对引航船提出一些的初步设想,根据规范化及国际大港口的要求来考虑,配置专用引航船是非常必要的。
普通船用雷达要获得航速、航向航迹等航行数据,需通过几次定位,由人工标绘实现。自动雷达标绘仪(ARPA)虽然自动显示上述数据,但存在跟踪延迟和雷达、计程仪、罗经等传感器引入的误差。另外,由于ARPA设备昂贵,不能在所有的船上安装。 GPS导航仪采用现代电子计算机技术,可实时计算并显示航速,航向,航迹偏差,风、流压差,还具有设置航路点、计划航线、显示到达航路点的距离、时间等导航功能。
3 GPS的避碰功能
船用雷达测定海上运动物标和静止物标的距离、方位等相对参数,通过人工标绘得到最近会遇距离(CPA)和到达最近会遇点的时间(TCPA)等避碰数据,驾驶员根据这些数据及时采取避让措施。但是,有些物标反射回波微弱,操作人员难以看清它们的回波图像,ARPA有可能对它们漏跟踪或错误跟踪而不能提供避碰数据。在气象条件恶劣时,出现严重的海浪回波干扰或雨、雪回波干扰,上述丢失物标的现象时有出现。对于未露出海面的暗礁、沉船、浅滩等潜在物标,雷达更是无能为力。根据海图和航海通告事先查出在航线附近水面危险的小物标和水下的潜在障碍物,把它们作为航路点在GPS导航仪中存贮,并根据障碍物和船舶状况设置报警范围。在航行中,驾驶员可以随时检查这些物标相对于本船的距离和方位。一旦船舶进入所设定的报警范围的边界,GPS导航仪立即发出报警,驾驶员作出避让措施。
4 GPS辅助雷达定位
雷达定位的难点是正确识别物标,对于不大熟悉雷达观测的驾驶员更是如此。若用雷达观测几个比较接近的非独立物标,由于物标回波图像边缘扩大、失真等原因,这些物标的回波图像难以清楚分开,因而观测雷达图像找不出与海图所对应的物标,或把一物标回波图像错认为另一物标的回波图像,获得错误的雷达船位或造成不能允许的船位误差。又由于在海图上查找雷达回波反射点要耽误时间,因而定位是不连续、不实时的,获取船位的时间滞后于实测船位的时间。滞后时间的大、小与观测者对雷达观测的熟练程度有关。
普通的GPS导航仪,除了直接存贮任一位置的经、纬度以外,还可输入当前位置到达雷达测量位置的距离、方位,计算并显示物标的所在位置的经、纬度。若把雷达测定的物标的距离、方位数据迅速输入GPS导航仪,根据它显示的经、纬度数据,可迅速在海图上找到对应的物标,由此作出雷达船位。用此方法取得的雷达船位比用常规法作得的船位准确、可靠,避免因识别反射物标错误而引起雷达船位错误或偏差,标绘所用的时间也可明显缩短。如果将雷达测定的距离和方位数据通过接口和控制装置输入GPS导航仪,导航仪就不需人工干预直接显示相应物标所在位置的经、纬度。
5 锚位监视功能
在船舶锚泊时,船用雷达可通过测定陆标的方位和距离监视本船的锚位偏离状况,也可通过测定到达他船的方位和距离监视他船的漂移状况,一旦发现本船和他船走锚,便可采取相应的措施避免发生事故。GPS的锚位监视是以锚位点为中心,输入的设定距离为半径,一旦天线所在位置超出此范围,即被认为走锚而发出报警。监控半径大、小的选择要根据GPS导航仪的定位精度、周围环境及船舶状况而定。由于GPS具有较高的定位精度,可以减小设置监控半径,提高监控灵敏度。若采用DGPS可进一步减小监控半径,提高监控灵敏度。通常,GPS导航仪的最小设置监控半径为0.1n mile。 虽然GPS不能监视他船的锚移状况,但对本船的锚移监视具有不需通过测定物标定位、监视灵敏度高、快速实时等优点。GPS与雷达相结合的锚位监控手段,对防止大风造成的损失可起到很大的作用。
6 DGPS测定船用雷达测向、测距误差
7 GPS与雷达配合应用需注意的问题
6. 船用雷达的局限性
船用雷达功率相对来说比较大,需要用380v电压
7. 中国船舶雷达研究所
有中国科学院大学沈阳计算所,
中国科学院上海微系统与信息技术研究所,
中科院电子学研究所研究生院 ,
中科院半导体研究所考研院,
中科院信号与信息处理考研(声学研究所)
中科院电子所(雷达)研究所研究生院。
电子信息的研究方向:大数据技术与应用、网络通信技术、机器学习与模式识别、移动云计算、虚拟化、互联网搜索与挖掘、计算机视觉与虚拟现实、智能信息处理、自然语言处理与信息检索工程、数控技术与实时系统、工业控制系统安全技术
8. 船舶雷达使用
主界面有雷达符号出现,表示雷达已经连接。使用前最好对于雷达进行设置,其位置在主界面的“工具”-“设置”-“雷达”中。
用户可以自定义启动报警的速度。只有当车速超过了预设速度的时候,雷达才会报警,这样可以减少在城市中因雷达信号太多而导致的报警过于频繁的问题。如果选择“智能预警”,则机器会自动将地图中的道路速限作为报警启动的速度值。与雷达连接成功后,会在地图画面也显示一个绿色的雷达图标。当侦测到前方有测速雷达信号时,nüvi1455雷达版可以自动发出TTS语音播报出测速雷达的类型,同时会有相应的文字显示在前方,提醒用户减速。
9. 民用船舶雷达
对空情报雷达。用于搜索、监视和识别空中目标。它包括对空警戒雷达、引导雷达和目标指示雷达,还有专门用来探测低空、超低空突防目标的低空雷达。
2,对海警戒雷达。用于探测海面目标的雷达。一般安装在各种类型的水面舰艇上或架设在海岸、岛屿上。
3,机载预警雷达。安装在预警机上,用于探测空中各种高度上(尤其是低空、超低空)的飞行目标,并引导己方飞机拦截敌机、攻击敌舰或地面目标。 它具有良好的下视能力和广阔的探测范围。
4,超视距雷达。利用短波在电离层与地面之间的跳跃传播,探测地平线以下的目标。它能及早发现刚从地面发射的洲际弹道导弹(见洲际导弹)和超低空飞行的战略轰炸机等目标,可为防空系统提供较长的预警时间,但精度较低。
5,弹道导弹预警雷达。用来发现洲际、中程和潜地弹道导弹,并测定其瞬时位置、 速度、发射点、弹着点等弹道参数。
6.民用雷达包括气象雷达、航管雷达、港口雷达及其他监视与测量雷达,是气象基本业务和气象服务的重要基础手段。航管雷达在民用航空交通管制方面得到了广泛应用。港管雷达广泛用于港口的船舶交通管制。
10. 船舶雷达的测距误差
距离丈量有哪些主要误差来源?(1)尺长误差,尺面所注的名义长度与实际长度不符所引起的误差,可以用尺长改正的办法使其消除。(2)定线的误差,丈量距离时,尺子所放的位置,偏离了直线的方向线,其所量的距离不是直线长度而是折线长度。因此量得的长度总是比实际长度长。(3)丈量本身的误差,包括:由于没有把尺的零点对准起点或测钎中心的误差;拉力不均匀的误差;尺倾斜误差;余长读数不准确的误差等。