1.1概述
GPS定位在测量中有很大的应用潜力。近年来,GPS接收机的小型化、小功耗给其应用于测量提供了有利的条件。在软件方面,GPS的基线解算、平差也有了很大的发展,这些都促使GPS在测量中得到了较为广泛的应用。尤其近几年,动态GPS(RTK)的出现,使测量工程缩短了工期,降低了成本,减少了人员的投入,这些方面充分体现了GPS技术较常规技术的优越性。
尽管动态GPS(RTK)的出现,使观测时间缩短,人员投入减少,并且不受网形和通视等条件的影响,提高了工作效率。但是,动态GPS(RTK)测量没有静态GPS测量的同步环、异步环及附合线路等约束条件,它是以基准站为中心呈放射状,以支点形式分布的散点,从而无法直接衡量其观测精度。因此,作为新生事物的动态GPS(RTK)测量在实际生产中的精度成为测量界关注的重点。
为了探求动态GPS(RTK)测量的精度,我分析和研究了动态GPS(RTK)测量的各种资料及其观测方法,同时对其进行了实测对比和研究。通过一系列的研究,对动态GPS(RTK)测量的精度有了一定的认识,进一步提高了观测精度和工作效率。
1.2 RTK技术的应用现状
现阶段的RTK技术主要应用包括以下几个方面,很多的应用都属于尝试性的,有待于更进一步的研究探讨
1.2.1施工放样
自从GPS差分定位技术出现以后,就有了针对施工放样的测量方法。GPS实时动态差分测量的实时性正是针对施工放样而设计的,RTK技术是实时动态差分测量的进一步发展,它的服务对象仍然是工程施工放样。RTK技术的出现,使得GPS测量的应用领域进一步拓宽。
近年来,RTK测量在道路施工中的应用越来越广,不仅用于道路中线及边线的施工放样,同时还用于挖填土方的测量,并且取得了良好的效果。
在各类管线放样施工中,RTK技术也表现出其绝对优势,如在国家重点工程“西气东输”工程中,RTK测量表现出了无与伦比的优越性;在环渤海石油开发中,海底电缆及石油天然气输送管线的铺设也都采用了RTK放样方法。在送变电线路放样及城市供水管道施工放样中的应用也已经取得了良好的效果。
1.2.2实时导航定位
GPS最初的应用是飞机、船舶的导航,随着实时定位技术的不断发展,定位精度逐步提高,其应用范围也不断扩大。目前主要为航空摄影测量、水底地形测量提供导航定位服务,在航空摄影测量中,RTK技术为摄影载体确定瞬时位置信息,而在水底地形测量中,主要是结合测深设备如数字测深仪、多波束水下测量超声仪、声纳多普勒定位仪等,间接测量水底某点位置。
1.2.3图根控制点布设
各类研究报告显示,RTK测量精度与常规测量的I级导线、IV等水准相当,可以满足各类测量的图根控制精度要求。GPS-RTK测量以其精度高、实时性强的特点在各行业的测量工作中与常规方法结合得到了迅速的推广。由于RTK测量可以实时提供坐标,无须进行室内计算,可以即测即用,各点之间不用通视,误差不积累等特点,深受广大测绘工作者喜爱。
具体做法是在待测碎部点附近较为开阔并且与碎部点通视的地方,以RTK方法测定两个以上控制点,在其中的仟意点上架设全站仪,测量碎部点的坐标位置。这种方法便捷迅速,精度可靠,己得到广泛应用。
1.2.4碎步点测量
由于GPS测量自身的局限性,一直制约着其在碎布点测量中的应用特别是在城区等对GPS信号遮挡严重的地方。但在一般地区,已经显示出RTK地形地籍图测绘的明显优势,对于比较低矮的建筑及其它一些地形特征点可以直接立杆测定,特别是在地籍测绘中,土地界址权属的测量划分,已经得到各界人士充分地肯定。
由于RTK测量的误差都是相对于参考站产生的,独立的两个RTK之间没有误差传播,RTK测量己经达到厘米级精度,但两点之间的方位精度远没有常规测量方法精度高,对于精度要求较高的测量来说还不太实用。