1. 深海钻井原理
随着人类对油气资源开发利用的深化,油气勘探开发从陆地转入海洋。因此,钻井工程作业也必须在灏翰的海洋中进行。在海上进行油气钻井施工时,几百吨重的钻机要有足够的支撑和放置的空间,同时还要有钻井人员生活居住的地方,海上石油钻井平台就担负起了这一重任。由于海上气候的多变、海上风浪和海底暗流的破坏,海上钻井装置的稳定性和安全性更显重要。
目前的海上石油钻井平台可分为固定式和移动式两种。固定式钻井平台大都建在浅水中,它是借助导管架固定在海底而高出海面不再移动的装置,平台上面铺设甲板用于放置钻井设备。支撑固定平台的桩腿是直接打入海底的,所以,钻井平台的稳定性好,但因平台不能移动,故钻井的成本较高。
为解决平台的移动性和深海钻井问题,又出现了多种移动式钻井平台,主要包括:坐底式钻井平台、自升式钻井平台、钻井浮船和半潜式钻井平台。
坐底式钻井平台又称沉浮式或沉底式钻井平台,其上部和固定式钻井平台类似,其下部则是由若干个浮筒或浮箱组成的桁架结构,充水后,使钻井平台下沉坐于海底并处于工作状态,排水后,使钻井平台上浮可进行拖航和移位。坐底式钻井平台多用于水浅、浪小、海底较平坦的海区。
自升式钻井平台是有多个(一般为3~4个)桩腿插入海底,并可自行升降的移动式钻井平台。自升式钻井平台基本由两部分组成,一部分是可以安放钻井设备、器材和生活区的平台,另一部分是可升降并可插入海底的桩腿。我国自行制造的自升式钻井平台“渤海一号”平台的四根桩腿是由圆形的钢管做成的,桩腿的高度有七十多米,升降装置是插销式液压控制机构。该型钻井平台造价较低、运移性好、对海底地形的适应性强,因而,我国海上钻井多使用自升式钻井平台。
钻井平台桩腿的高度总是有限的,为解决在深海区的钻井问题,又出现了漂浮在海面上的钻井船。钻井船的排水量从几千吨到几万吨不等,它既有普通船舶的船型和自航能力,又可漂浮在海面上进行石油钻井。由于钻井船经常处于漂浮状态,当遇到海上的风、浪、潮时,必然会发生倾斜、摇摆、平移和升降现象,因此钻井船的稳定性是一个非常关键的问题。目前,海上钻井船的定位常用的是抛锚法,但该方法一般只适用于200m以内的水深,水再深时需用一种新的自动化定位方法。
半潜式钻井平台其结构形式与坐底式钻井平台相似,上部为钻井的工作平台,下部为浮筒结构。它综合了坐底式钻井平台和钻井船的优点,解决了稳定性和深水作业的矛盾。钻井作业时,平台呈半潜状态漂浮在海面上,浮筒在海水下的20~30m处,受大海风浪的影响小,所以平台的稳定性比钻井浮船要好,钻井作业结束,排出水形成浮箱后可进行拖航,是目前海上钻井应用较广泛的一种石油钻井平台。
2. 深海钻井原理图
主要用于钻探井的海上结构物。上装钻井、动力、通讯、导航等设备,以及安全救生和人员生活设施。海上油气勘探开发不可缺少的手段。主要有自升式和半潜式钻井平台。
①自升式钻井平台
由平台、桩腿和升降机构组成,平台能沿桩腿升降,一般无自航能力。1953年美国建成第一座自升式平台,这种平台对水深适应性强,工作稳定性良好,发展较快,约占移动式钻井装置总数的1/2。工作时桩腿下放插入海底,平台被抬起到离开海面的安全工作高度,并对桩腿进行预压,以保证平台遇到风暴时桩腿不致下陷。完井后平台降到海面,拔出桩腿并全部提起,整个平台浮于海面,由拖轮拖到新的井位。
②半潜式钻井平台
上部为工作甲板,下部为两个下船体,用支撑立柱连接。工作时下船体潜入水中,甲板处于水上安全高度,水线面积小,波浪影响小,稳定性好、自持力强、工作水深大,新发展的动力定位技术用于半潜式平台后,工作水深可达900~1200米
。半潜式与自升式钻井平台相比,优点是工作水深大,移动灵活;缺点是投资大,维持费用高,需有一套复杂的水下器具,有效使用率低于自升式钻井平台。
3. 深水井钻井原理
深水井的出水原理有两种。
一种是利用动力设备,例如水泵,利用水泵把深水井里的水抽出来。利用电动能转换为水的势能。
另一种是抽取水井管内的空气,使其基本上处于真空状态,或者使其压力小于大气压力即1个大气压,利用大气压将地下水压出来。
4. 深海钻井技术的工作原理
随着人类对油气资源开发利用的深化,油气勘探开发从陆地转入海洋。因此,钻井工程作业也必须在灏翰的海洋中进行。在海上进行油气钻井施工时,几百吨重的钻机要有足够的支撑和放置的空间,同时还要有钻井人员生活居住的地方,海上石油钻井平台就担负起了这一重任。由于海上气候的多变、海上风浪和海底暗流的破坏,海上钻井装置的稳定性和安全性更显重要。
目前的海上石油钻井平台可分为固定式和移动式两种。固定式钻井平台大都建在浅水中,它是借助导管架固定在海底而高出海面不再移动的装置,平台上面铺设甲板用于放置钻井设备。支撑固定平台的桩腿是直接打入海底的,所以,钻井平台的稳定性好,但因平台不能移动,故钻井的成本较高。
为解决平台的移动性和深海钻井问题,又出现了多种移动式钻井平台,主要包括:坐底式钻井平台、自升式钻井平台、钻井浮船和半潜式钻井平台。
坐底式钻井平台又称沉浮式或沉底式钻井平台,其上部和固定式钻井平台类似,其下部则是由若干个浮筒或浮箱组成的桁架结构,充水后,使钻井平台下沉坐于海底并处于工作状态,排水后,使钻井平台上浮可进行拖航和移位。坐底式钻井平台多用于水浅、浪小、海底较平坦的海区。
自升式钻井平台是有多个(一般为3~4个)桩腿插入海底,并可自行升降的移动式钻井平台。自升式钻井平台基本由两部分组成,一部分是可以安放钻井设备、器材和生活区的平台,另一部分是可升降并可插入海底的桩腿。我国自行制造的自升式钻井平台“渤海一号”平台的四根桩腿是由圆形的钢管做成的,桩腿的高度有七十多米,升降装置是插销式液压控制机构。该型钻井平台造价较低、运移性好、对海底地形的适应性强,因而,我国海上钻井多使用自升式钻井平台。
钻井平台桩腿的高度总是有限的,为解决在深海区的钻井问题,又出现了漂浮在海面上的钻井船。钻井船的排水量从几千吨到几万吨不等,它既有普通船舶的船型和自航能力,又可漂浮在海面上进行石油钻井。由于钻井船经常处于漂浮状态,当遇到海上的风、浪、潮时,必然会发生倾斜、摇摆、平移和升降现象,因此钻井船的稳定性是一个非常关键的问题。目前,海上钻井船的定位常用的是抛锚法,但该方法一般只适用于200m以内的水深,水再深时需用一种新的自动化定位方法。
半潜式钻井平台其结构形式与坐底式钻井平台相似,上部为钻井的工作平台,下部为浮筒结构。它综合了坐底式钻井平台和钻井船的优点,解决了稳定性和深水作业的矛盾。钻井作业时,平台呈半潜状态漂浮在海面上,浮筒在海水下的20~30m处,受大海风浪的影响小,所以平台的稳定性比钻井浮船要好,钻井作业结束,排出水形成浮箱后可进行拖航,是目前海上钻井应用较广泛的一种石油钻井平台。
5. 深海钻井平台工作原理
钻井天车由1提升系统,2.旋转系统,3.循环系统,4.动力设备组成。
1.提升系统:主要作用是用来起、下钻柱(或下套管),以实现钻头的钻进送钻等工作。
2.旋转系统:主要作用是由动力机组驱动转盘,通过转盘方补心带动方钻杆(钻杆和钻铤)、方钻杆再带着钻头旋转进行钻井。
3.循环系统:主要作用是钻井过程中,通过动力机组带动泥浆泵来循环钻井流体,经过立管、水龙带、水龙头、方钻杆、钻杆和钻铤,将泥浆池的泥浆送到钻头处,以实现钻井流体将井底的钻屑带到地面。
4.动力设备:主要作用是为驱动绞车、转盘、钻井泵等工作机工作提供动力。
6. 深海钻井深度
中国最深的海面钻井是15250米。
中国目前正在大力投资开发海洋油气资源,中国又一款海上巨无霸面世,它就是全球最大的钻井平台蓝鲸2号,据称这座巨型钻井平台重达4.4万吨,拥有强大的稳定性,就算是遭遇15级飓风也吹不倒,并且它的最大钻井深度达到了15250米。
7. 深井钻机原理
地下钻孔机的工作原理是:由CCD摄像捕捉工作靶心,成像后操作系统进行分析处理,并由中央处理器控制X、Y轴及冲模位移同时传输信号进行冲孔加工,操作者只需将工件放在CCD可视范围内任意一点即可实现自动打孔机自动钻孔。
8. 深井钻探原理
含义:地下水水位(underground water level)是指地下水面相对于基准面的高程。通常以绝对标高计算。潜水面的高程称“潜水位”;承压水面的高程称“承压水位”。根据钻探观测时间可分为初见水位、稳定水位、丰水期水位、枯水期水位、冻前水位等。
测量方法:采用地下水位监测系统,水位计原理是压力式原理,数据线引出地表接入远程自动化采集系统,并通过GPRS方式进行数据传输会监控中心的软件管理平台。根据压力与水深成正比关系的静水压力原理,运用水压敏感集成元器件做的水位计。当传感器固定在水下某一点时,该测点以上水柱压力作用于水压敏感集成元器件,使元器件电阻发生变化,从而导致电压变化,这样即可间接测出该点的水位。
为提高测量精度一般需要配合气压补偿计来消除大气压力变化所带来的测量误差。该传感器核心在于压力式敏感集成元器件;并且内置温度传感器,对外界温度影响产生的变化进行温度修正;每个传感器内部有计算芯片,自动对测量数据进行换算而直接输出物理量,减少人工换算的失误和误差;全部元器件进行严格测试和老化筛选,尤其是高低温应力消除试验,增强产品的稳定性和可靠性;另有三防处理,保证在长期恶劣环境中高成活率的问题。
9. 深海钻井是什么意思
成本有个粗略的估算方法:(钻井船+配套拖轮)的费用*(钻井天数+天气待机天数)+钻井船及船舶的动复原复原