1. 船用机械设备减震周固定
发电机输出电压不稳可能由以下几个原因造成: 发电机超载运行,负载上的大用电器频繁启动造成电压上下波动大。或因发电机本身存在不良因素,励磁电压不稳或碳刷接触不良,具体可检查励磁绕组及励磁功率元件,包括整流二极管和可控硅及其它阻容元件,可调电位器也会经常接触不好,应注意保养。也有可能因柴油机调速不稳的原因,它是自动根据负载的轻重来调节输出功率的,高压油泵的供油及稳速造成的较多,应对柴油机进行检修或保养。
1)、电线接线部份松动——解决方法:检查柴油发电机组各连接部分,并与修理。
2)、控制屏电压-电流选择开关失效——解决方法:柴油发电机组更换该开关。
3)、控制屏电压调整电阻器失效——解决方法:更换电压调压电阻器。
4)、电压表失效——解决方法:换电压表。
5)、调压器不良或未调整调压器——解决方法:检查调压器。
6)、柴油发电机组运转振动过大——解决方法:检查柴油发电机组避震设备。
7)、引擎速度不稳定——解决方法:调整或更换引擎燃油系统零件使其速度稳定。
2. 船舶扭振计算
任何使用的器械,我们都会希望使用的时长越久越好,对柴油发电机组也不例外。不过,目前在用的柴油发电机组,距离国际平均寿命8000h以上的正常情况仍然有一定的距离,主要的故障之一就是柴油机气缸套的早期磨损。
因此,想要延长柴油机的使用寿命,这六大法宝你不可不知。
1
正确维护和保养空气滤清系统
空气滤清系统失效将形成缸套的磨损,使缸套寿命大幅降低,故对空气滤清都有较高的要求,要选用多级高效的空气滤清器。
要经常检查和清理各部件的尘土,确保其里外的清洁,对于损坏的部件要及时更换,避免磨粒进入缸套。确保滤清器和吸入软管连接处的密封性,并保证增压器压气机出口至缸盖间不漏气。
2
机温的控制
缸套的腐蚀磨损在很大程度上取决于柴油机的工作温度。试验表明,当冷却液温度降至40-50℃时,缸套磨损量将是正常磨损量的5-6倍,且主要是腐蚀磨损,所以保持冷却系统工作温度不超过90℃,将大大限制含硫的蒸气凝结在缸套壁上,从而达到减少腐蚀的目的。
3
润滑油质量与粘度的选择
柴油机应按使用说明书选用CC和CD以上级别的机油,即根据柴油机的强化强度和工作环境温度进行选择。
4
缸套外圆表面的穴蚀与防冻冷却液
气缸内气体燃烧,活塞除在气缸内往复直线运动外还会有左右摇摆,使缸套严重振动。此时与缸套接触的冷却水在振动下产生气泡。久之缸套外圆生成许多麻点,逐渐扩大形成孔穴,导致穿透缸壁。
为了防止缸套产生穴蚀,除在设计制造方面采取措施外,从使用保养与维修角度还要做好以下工作:
1)降低活塞对缸套的撞击,在保证基本润滑的条件下,活塞与缸套的间隙应尽可能小,同时在装配中要保证缸套中心的垂直度。
2)重视防冻冷却液的选用与更换,选用防腐、防蚀性能好的合格达标产品,使用中要经常检查,更换时间不要超过两年。
5
正确安装和使用方法
柴油发电机组的使用,应严格按柴油机使用说明书的规定进行。首先保证缸套和机体等零部件的清洁度及各部件的装配间隙,同一台柴油机的各活塞、连杆的重量应尽可能一致、不要超出允差,同时要保证各种螺栓、螺母拧紧力矩值。
曲轴结合组在使用过程中,要注意扭振减振器是否失效,各轴承配合间隙是否超差,以避免引起曲轴的异常振动,加快活塞连杆组和缸套的早期磨损。
6
合理选择磨合规范
新机或大修后的柴油机在正式使用前,须按使用说明书的规定进行磨合,一般磨合运转60h后,方可投入全负荷使用。磨合的目的是改善柴油机各运动部件的工作状况,提高可靠性和使用寿命。
3. 船舶系固设备的固定设备
国内集装箱运输应该掌握的安全口诀。
1、文书“四宝。
(1)船舶稳性总结表。
(2)稳性报告书。
(3)装载手册。
(4)系固手册。
2、国内集装箱运输作业“四查”。
(1)劳保用具常检查,安全装备戴戴好。
(2)系固设备要到位,座扭锥锁不能少。
(3)系固设备常检查,产品证书备在船。
(4)系固手册需认可,严格执行保安全。
3、国内集装箱运输绑扎系固“四要四不要”
四要:
(1)下重上轻,左右对称,危货隔离,按图积载。
(2)堆垛顶部,桥锁固定,无法固定,横向绑扎。
(3)外侧箱角,扭锁固定,舱口围处,木楔加固。
(4)堆高两层,木楔加固,堆高多层,钢丝绑扎。
四不要:
(1)一根钢丝,不要横跨整行来捆绑。
(2)同侧箱顶,不要未形成交叉绑扎。
(3)顶有空缺,不要内外无绑扎连接。
(4)顶层邻箱,不要未紧固也未绑扎。
4. 船用减震器结构图
Stowa 的历史 Stowa 是1927年创建于德国南部制表重地的一个表厂,最初是为一些瑞士表代工,后来自己做表。历史上以制造bauhaus风格手表、德国纳粹空军用 B-Uhr、海军用计时器闻名。二战后做民用表,商业十分成功,销往80多个国家(包括中国)。还发明rufa避震器用于德国本土机芯 Puw和 Durowe上。现在 Stowa 品牌的持有者是钟表设计师 Joerg Schauer,销售策略是复刻经典款式采用厂家直销。它也是复刻军表最尊重原版设计的品牌,价格合理。 德国表大致分陆军海军空军三种: 陆军使用品牌很杂,真利时浪琴智能女神比较出名,特点是阿拉伯时标小三针(有的带旋转外环); 空军有B-Uhr和计时两种, B-Uhr大秒针表最有名,五家厂代工(郎格,万国,Laco,Stowa,Wempe),计时手表在当时算是先进技术,主要由 Urofa-tutima、Junghans、Hanhart 制造; 海军以船钟为主,朗格、Stowa、Wempe也制作怀表式船用计时器,另外德国纳粹向意大利订过沛纳海潜水表,德国自己也做过少量大型潜水表
5. 船舶液压联轴节
液压是机械工业上的一个名词,但是液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;所以,接下来主要给大家讲述的是液压的发展史的相关介绍。
液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。
第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁o尼斯克(GoConstantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。
液压机
第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近 20 多年。在 1955 年前后,日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。
钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。
以上就是液压发展史的相关介绍的知识,希望对大家能够有所帮助,也希望大家能够多了解液压的知识。
6. 船舶常用机械设备
1、按照汽轮机的热力特征分类 (1)、凝汽式汽轮机:蒸汽在汽轮机内膨胀做功以后,除小部分轴封漏气外,全部进入凝汽器凝结成水的汽轮机.实际上为了提高汽轮机的热效率,减少汽轮机排汽缸的直径尺寸,将做过功的蒸汽从汽轮机内抽出来,送入回热加热器,用以加热锅炉给水,这种不调整抽汽式汽轮机,也统称为凝汽式汽轮机. (2)、抽汽凝汽式汽轮机:蒸汽进入汽轮机内部做过功以后,从中间某一级抽出来一部分,用于工业生产或民用采暖,其余排入凝汽器凝结成水的汽轮机,称为一次抽汽式或单抽式汽轮机.从不同的级间抽出两种不同压力的蒸汽,分别供给不同的用户或生产过程的汽轮机称为双抽式(二次抽汽式)汽轮机. (3)、背压式汽轮机:蒸汽进入汽轮机内部做功以后,以高于大气压力排除汽轮机,用于工业生产或民用采暖的汽轮机. (4)、抽汽背压式汽轮机:为了满足不同用户和生产过程的需要,从背压式汽轮机内部抽出部分压力较高的蒸汽用于工业生产,其余蒸汽继续做功后以较低的压力排除,供工业生产和居民采暖的汽轮机. (5)、中间再热式汽轮机:对于高参数、大功率的汽轮机,主蒸汽的除温、初压都比较高,蒸汽在汽轮机内部膨胀到末几级,其湿度不断增大,对汽轮机的安全运行很不利,为了减少排气湿度,将做过部分功的蒸汽从高压缸中排出,在返回锅炉重新加热,使温度接近初始状态,然后进入汽轮机的的低压缸继续做功,这种汽轮机称为中间再热式汽轮机. 2、按用途分 (1)、电站汽轮机:仅用来带动发电机发电的汽轮机称为电站汽轮机. (2)、供热式汽轮机:既带动发电机发电又对外供热的汽轮机称为供热式汽轮机,又称为热电联产汽轮机. (3)、工业汽轮机:用来驱动风机、水泵、压缩机等机械设备的汽轮机称为工业汽轮机. (4)、船用汽轮机:专门用于船舶推进动力装置的汽轮机称为船用汽轮机. 3、按汽轮机的进汽压力分 (1)、低压汽轮机:进汽压力为1.2~1.5MPa (2)、中压汽轮机:进汽压力为2.0~4.0MPa (3)、次高压汽轮机:进汽压力为5.0~6.0MPa (4)、高压汽轮机:进汽压力为6.0~10.0MPa (5)、超高压汽轮机:进汽压力为12.0~14.0MPa (6)、亚临界汽轮机:进汽压力为16.0~18.0MPa(7)、超临界汽轮机:进汽压力大于22.17MPa
7. 船舶减震器
KYB减震。日本 KYB 公司有效的利用油压技术生产销售用于汽车、摩托车、卡车、巴士、飞机、铁路车辆的减震器,用于建设及产业机械、农耕机械的油压设备,用于船舶、剧场舞台装置的系统设备。 日本 KYB 株式会社是世界上最大的液压设备制造商之一。 KYB 集团在全球21个国家有32家分公司,其中在亚洲、欧洲、美国等国家和地区拥有 15 个生产基地。
8. 船舶机械装置安装与维修论文
一、重力式下水 重力式下水又分纵向涂油滑道下水、纵向钢珠滑道下水和横向涂油滑道下水三种,这也是主要的重力式下水方式。
1、纵向涂油滑道下水是船台和滑道一体的下水设施,其历史悠久,经久耐用。
下水操作时先用一定厚度的油脂浇涂在滑道上以减少摩擦力,这种油脂以前多采用牛油,现在多使用不同比例的石蜡、硬脂酸和松香调制而成。然后将龙骨墩、边墩和支撑全部拆除,使船舶重量移到滑道和滑板上,再松开止滑装置,船舶便和支架、滑板等一起沿滑道滑入水中,同时依靠自身浮力漂浮在水面上,从而完成船舶下水。这种下水方式适用于不同下水重量和船型的船舶,具有设备简单、建造费用少和维护管理方便的优点;但也存在较大的缺点:下水工艺复杂;浇注的油脂受环境温度影响较大,会污染水域;船舶尾浮时会产生很大的首端压力,一些装有球鼻艏和艏声呐罩的船舶为此不得不加强球首或暂不装待下水后再入坞安装;船舶在水中的冲程较大,一般要求水域宽度有待下水船舶总长的数倍长度,必要时还要在待下水船舶上设置锚装置或转向装置,利用拖锚或全浮后转向的方式来控制下水冲程。
2、纵向钢珠滑道下水
这种方式是用一定直径的钢珠代替油脂充当减摩装置,使原来的滑动摩擦变为滚动摩擦,降低滑板和滑道之间的摩擦阻力,钢珠可以重复使用,经济性较好。钢珠滑道下水装置主要由高强度钢珠、保距器和轨板组成。保距器每平方米装有12个钢珠。木质的滑板和滑道上各有一层钢制轨板以防被钢珠压坏,在滑道末端设有钢珠网袋以承接落下的钢珠和保距器。这种下水方式使用启动快,滑道坡度小,滑板和滑
道的宽度也较小,钢珠可以回收复用,其下水装置安装费用和使用费用都比油脂滑道低。而且不受气候影响,下水计算比较准确。但初始投资大、滑板比较笨重、振动大。
3、横向涂油滑道下水
这种方式是指船舶下水是按船宽方向滑移的,不是船尾首先进入水中而是船舶的一舷首先入水。这种方式分为两种,一种是滑道伸入水中,先将船舶牵引到楔形滑板上,再沿滑道滑移到水中;另一种是滑道末端在垂直岸壁中断,下水时船舶连同下水架、滑板一起堕入水中,再依靠船舶自身浮力和稳性趋于平衡全浮。船舶跌落高度为1-3米。这种方式由于同时使用的滑道多,易造成下水滑移速度不一样,造成下水事故,而且跌落式下水船舶横摇剧烈,船舶受力大,对船舶横向强度和稳性要求较高。
二、漂浮式下水漂浮式下水是一种将水用水泵或自流方式注入建造船舶的大坑里依靠船舶自身的浮力将船浮起的下水方式。最常见的是造船坞下水。
漂浮式下水使用的船坞分两种,即造船坞和修船坞,区别在于造船坞比较宽浅而修船坞比较深。
造船坞是用来建造船舶和船舶下水的水工建筑物,有单门的,双门的和母子坞等多种形式,基本结构是由坞底板、坞墙、坞门和泵房等组成。坞门本身具有压载水舱和进排水系统,安装到位后将水压入坞门水舱内,坞门会下沉就位,就在坞外海水的压力下紧紧压在坞门口,再将坞内的水抽干就可以在坞内造船了。
船舶建造完成后,通过进排水系统将坞外水域的水引入坞内,船舶依靠浮力起浮,待坞内水面和坞外一致时就可以排出坞门内的压载水起浮坞门并脱开坞门,然后将船舶用拖船拖出船坞,坞门复位进入下一轮造船。
造船坞下水是一种简便易行的下水方式,其安全性、工艺简单性比较好。可以有效地克服倾斜船台头部标高太大的缺点,减低吊机起吊高度,还可以避免重力式下水所要求的水域宽度,可以引入机械化施工手段。因此,尽管造船坞造船方式初始投资较大,但是仍是建造VLCC的唯一手段。
三、机械化下水
1、纵向船排滑道机械化下水
船舶在带有滚轮的整体船排或分节船排上建造,下水时用绞车牵引船排沿着倾斜船台上的轨道将船舶送入水中,使船舶全浮的一种下水方式。分节式船排每节长度是 3-4米,宽度是骨干产品船宽的80%,高度在0.4米到0.8米间。由于位于船艏的那节船排要承受较大的首端压力,因此要特别加强其结构,因此
分为首节船排和普通船排两种。由于船排顶面与滑道平行,而且高度只有0.4-0.8米,所以其滑道水下部分较短,滑道末端水深较小,采用挠性连接的分节船排时由于船排可以在船舶起浮后在滑道末端靠拢,则可以进一步降低滑道水下部分长度和降低末端水深。这种滑道技术要求较低,水工施工较简单,投资也较小,而且下水操作平稳安全,主要适用于小型船厂。但由于船排高度小,船底作业很不方便,一次仅适用小型船舶的下水作业。
为提高船排滑道的利用率,可以设置横移坑和多船位水平船台和纵向倾斜滑道组合,可以大大提高纵向船台的利用率。
2、两支点纵向滑道机械化下水
这种下水使用两辆分开的下水车支撑下水船舶,它可以直接讲船舶从水平船台拖曳到倾斜滑道上从而使船舶下水。
这种滑道是用一段圆弧将水平船台和倾斜滑道连接起来,以便移船时可以平滑过渡。具有结构简单、施工方便、操作容易的优点,缺点是由于只有两辆下水车支撑船舶首尾,对船舶纵向强度要求很高,在尾浮时会产生很大的首端压力,因此只适用纵向强度很大的船舶。
3、楔形下水车纵向机械化下水
这种滑道上的下水车架面是水平的或稍有坡度,船舶下水时是平浮起来的,不会产生首端压力,下水工艺简单可靠,适用于较大的船舶下水。把它用横移坑和多船位水平船台连接起来可以提高滑道使用效率,是一种比较理想的纵向机械化下水设施。缺点是下水车尾端过高,要求滑道末端水深较大,因而导致水工施工量大,投资大,且滑道末端易被淤泥覆盖,选用时要充分考虑水文条件。
4、变坡度横移区纵向滑道机械化下水
这种下水方式的横移区由水平段和变坡段两部分组成。侧翼布置有多船位水平船台的横移区,因移船的需要使横移车轨道呈水平状态,故称水平段;变坡度的横移区其轨道只有一组仍为水平,其它各组均带有坡度,这些轨道的坡度能使横移车在横移过程中逐步改变其纵向坡度,最后获得与纵向滑道相同的坡度,故称为变坡段。同时,为使横移车在变坡段仍保持横向水平,带坡度轨道均采用高低两层轨道的方式。
由于横移区具有变坡功能,所以采用纵向倾斜滑道下水。同时,可以在下水滑道纵向轴线处建造一座纵向倾斜船台。通过横移车在水平段实现与水平船台的衔接;在变坡段末端实现与纵向倾斜船台、下水滑道的衔接,使一种下水设施可以供两种船台使用。而且这种滑道是用船台小车兼做下水滑车的,故滑道末端水深较小,滑道建设投资小。
但是,这种下水方式和所有采用纵向下水工艺滑道一样存在船舶尾浮时较大的首端压力。
一般这种方式多用于国内码头岸线紧张而腹地广大的渔船修造厂和中小型船厂,修造船可以在内场水平船台进行,只设一条下水滑道,减少滑道水下部分的养护工作量。
这种下水方式在使用时可以人工控制载有待下水船舶的船台小车的速度,必要时可以停止下水。也可以用于船舶的上排修理。
5、高低轨横向滑道机械化下水
这种滑道由滑道斜坡部分和横移区两部分组成。下水车在滑道斜坡部分移动时,邻水端和靠岸端得走轮各自行走在高低不同得两层轨道上,以保持下水车架面处于水平状态。为此斜坡部分得高轨和横移区得相应轨道应该用相同半径的圆弧平滑连接起来。高轨I和低轨II得高度差应保证邻水端和靠岸端得走轮轴处于同一水平面。过渡曲线上任何两点之间得水平距离应恒等于走轮轴距,才能使下水车在下滑得任何位置都能保证水平。这种方式具有布置简单、架面较低、斜坡部分受力时不致出现深陷得凹槽等优点,同时可以在横移区侧翼布置多船位水平船台,机械化程度较高和操作简单可靠,对水域的宽度和深度得要求都比纵向下水小的多,下水最大重量5000吨。但这种方式水工建筑复杂,铺轨精度高,造价高。
6、梳式滑道机械化下水
由斜坡滑道和水平横移区组成,而且和横移区侧翼的多船位水平船台连接,船台小车和下水车式分别单独使用。
在斜坡滑道部分铺设若干组轨道,每组轨道上有一辆单层楔形下水车,每辆下水车有单独的电动绞车控制。斜坡滑道部分和横移区的轨道交错排列,位于轨道错开地区处于同一水平处的连线称为O轴线,水平轨道和斜坡滑道互相伸过O轴线一定长度,形成高低交错的梳齿,所以称为梳式滑道,其作用是将水平船台上的待下水船舶转载到楔形下水车上。
具体操作时,将船舶置于船台小车上,开动船台小车做纵向运动,待船舶移到横移区的纵向轨道和横向轨道交错处时启动小车下部的液压提升装置提升船台小车的走轮,将车架旋转90度后落下走轮到横移轨道上,开动船台小车将船舶运动到O轴线处,再次启动船台小车上的提升装置将船舶略为升高,此时用电动小车将楔形下水车托住船舶,降下船台小车的提升装置并移开船台小车,船舶即座落在下水车上,最后开动下水车上的电动绞车将船舶送入水中完成下水作业。
船台小车和下水车各自有单独的电动绞车,免去穿换钢丝的麻烦,提高了作业的安全性和作业效率;下水车的轮压较低,对斜坡滑道的施工精度要求较低;各个区域的建设独立性较强,可以分期施工。但由于自备牵引设备,船台小车结构复杂,维修繁琐;船台小车走轮转向和O轴线处换车作业麻烦,使用船厂不多。
7、升船机下水
升船机就是在岸壁处建造的一个承载船舶的大型平台,利用卷扬机做垂直升降的下水设施。根据平台和移船轨道的相对位置分为纵向和横向两种类型。
船舶下水时首先驱动卷扬机将升船机平台与移船轨道对准并用定位设备固定之,船舶在移船小车的承载下移到平台上就位,带好各种缆索,解除定位设备,卷扬机将升船机平台连同下水船舶降入水中,船舶会在自身浮力作用下自行起浮。
升船机结构紧凑,占地面积小,适用于厂区狭小,岸壁陡立。水域受限的船厂,升船机作业平稳,效率高,适用于主导产品定型批量生产。但升船机对船舶尺度限制大,只适用于中小型船厂。上海的4805厂(申佳船厂)有国内第一座3000吨级升船机。
利用浮船坞做下水作业,首先使浮船坞就位,坞底板上的轨道和岸上水平船台的轨道对准,将用船台小车承载的船舶移入浮坞,然后将浮坞脱离与岸壁的连接,如果坞下水深足够的情况下浮坞就地下沉,船舶即可自浮出坞;如果坞下水深不足就要将浮坞拖带到专门建造的沉坞坑处下沉。
根据船舶入坞的方式分为纵移式和横移式。纵移式的浮坞中心线和水平船台移船轨道平行,可以采用双墙式浮坞,船舶入坞按船长方向移动。上海江南和广州黄埔使用此类浮坞。横移式浮坞多使用单墙式浮坞,也可以使用双墙式浮坞,但这种浮坞的一侧坞墙可以拆除,使用时将浮坞横靠在水平船台之岸壁,用行车拆去靠岸一侧坞墙,将船舶拖入浮坞,再将活动坞墙装复做下水作业。
浮坞下水设施具有能与多船位水平船台对接的能力,造价较低,建造周期亦短,下水作业平稳安全,但作业复杂,多数时候要配备深水沉坞坑。 四、气囊式下水 目前,我国中小型船舶生产企业普遍采用气囊下水方式,虽然具有经济便利等优点,但是与传统的滑道式下水、轨道式下水、坞内下水等下水方式相比,气囊下水方式还存在缺乏理论支撑,实际操作中不规范等问题。根据现有船舶建造实践经验,在建造船长小于180 m的钢质普通船舶时,采用气囊式下水方式基本上还是可行的。因此,标准中规定二级Ⅰ类以下的船舶生产企业允许使用气囊式下水方式,同时对采用气囊下水的设施设备以及下水方案也提出了相应的要求。
9. 船舶振动及减振
1 请先确定抛光机器本身的性能 没有问题
2 机器是否稳定,无论是手握还是固定,机器本身需要很稳,才能使机器非常平稳
3 抛光盘确定是否装的很正,如果盘是偏的,会导致机器抖动------这是机器抖动最主要的原因
4 适当的开高转速,这样就能通过动平衡达达到减震的效果。